4 research outputs found

    Reliable Reporting for Massive M2M Communications with Periodic Resource Pooling

    Get PDF
    This letter considers a wireless M2M communication scenario with a massive number of M2M devices. Each device needs to send its reports within a given deadline and with certain reliability, e. g. 99.99%. A pool of resources available to all M2M devices is periodically available for transmission. The number of transmissions required by an M2M device within the pool is random due to two reasons - random number of arrived reports since the last reporting opportunity and requests for retransmission due to random channel errors. We show how to dimension the pool of M2M-dedicated resources in order to guarantee the desired reliability of the report delivery within the deadline. The fact that the pool of resources is used by a massive number of devices allows to base the dimensioning on the central limit theorem. The results are interpreted in the context of LTE, but they are applicable to any M2M communication system.Comment: Submitted to journa

    On Throughput Maximization of Grant-Free Access with Reliability-Latency Constraints

    Full text link
    Enabling autonomous driving and industrial automation with wireless networks poses many challenges, which are typically abstracted through reliability and latency requirements. One of the main contributors to latency in cellular networks is the reservation-based access, which involves lengthy and resource-inefficient signaling exchanges. An alternative is to use grant-free access, in which there is no resource reservation. A handful of recent works investigated how to fulfill reliability and latency requirements with different flavors of grant-free solutions. However, the resource efficiency, i.e., the throughput, has been only the secondary focus. In this work, we formulate the throughput of grant-free access under reliability-latency constraints, when the actual number of arrived users or only the arrival distribution are known. We investigate how these different levels of knowledge about the arrival process influence throughput performance of framed slotted ALOHA with KK-multipacket reception, for the Poisson and Beta arrivals. We show that the throughput under reliability-latency requirements can be significantly improved for the higher expected load of the access network, if the actual number of arrived users is known. This insight motivates the use of techniques for the estimation of the number of arrived users, as this knowledge is not readily available in grant-free access. We also asses the impact of estimation error, showing that for high reliability-latency requirements the gains in throughput are still considerable.Comment: Accepted for publication in ICC'201

    Analysis of d-ary Tree Algorithms with Successive Interference Cancellation

    Full text link
    In this article, we calculate the mean throughput, number of collisions, successes, and idle slots for random tree algorithms with successive interference cancellation. Except for the case of the throughput for the binary tree, all the results are new. We furthermore disprove the claim that only the binary tree maximises throughput. Our method works with many observables and can be used as a blueprint for further analysis.Comment: 30 pages, 2 figures, comments welcom

    Analysis of Tree-Algorithms with Multi-Packet Reception

    Full text link
    In this paper, we analyze binary-tree algorithms in a setup in which the receiver can perform multi-packet reception (MPR) of up to and including K packets simultaneously. The analysis addresses both traffic-independent performance as well as performance under Poisson arrivals. For the former case, we show that the throughput, when normalized with respect to the assumed linear increase in resources required to achieve K-MPR capability, tends to the same value that holds for the single-reception setup. However, when coupled with Poisson arrivals in the windowed access scheme, the normalized throughput increases with K, and we present evidence that it asymptotically tends to 1. We also provide performance results for the modified tree algorithm with K-MPR in the clipped access scheme. To the best of our knowledge, this is the first paper that provides an analytical treatment and a number of fundamental insights in the performance of tree-algorithms with MPR.Comment: Published in : GLOBECOM 2020 - 2020 IEEE Global Communications Conferenc
    corecore